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Abstract 
In earlier work we have proposed the concept of the 
dynamic group maximum matching for grouping the 
system graph into groups of different sizes according to 
the tasks arriving at the system.  Also, we have developed 
a more efficient integrated fault-tolerant technique for 
ultra-reliable execution of tasks where both 
hardware (processors and communication channels) 
and software failures, and on-line fault diagnosis 
are considered. The proposed approach called the 
Integrated Fault-Tolerant (IFT) approach. 
Furthermore, we have proposed integrated fault-tolerant 
scheduling algorithms. The introduced algorithms are 
based on the dynamic group maximum matching concept 
and the IFT technique. 

In this work, we studied the effect of the IFT 
technique on system performance for four of the 
proposed scheduling algorithms. The algorithms are: 
Integrated Fault-Tolerant First-Come, First-Served 
(FCFS), Integrated Fault-Tolerant (FCFS + Smallest 
Fits First) (FCFSSFF) scheduling algorithm, Integrated 
Fault-Tolerant (FCFS + Largest Fits First) (FCFSLFF) 
scheduling algorithm, and Integrated Fault-Tolerant 
(FCFS + First Fits First) (FCFSFFF) scheduling 
algorithm. We considered two performance metrics: 
system mean response time and percentage of completed 
tasks of specific type. 
 
Keywords: Performance Evaluation; Fault Tolerance; 
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1. Introduction 
Various studies have shown that both hardware and 
software are subject to failures. However, the 
majority of the existing works have dealt with the 
problem by considering that either software is 
fault-free but hardware is subject to failure, for 
instance see [1] - [4], or hardware is fault-free but 
software is subject to failure, for instance see [5] - 
[11]. Thus, techniques for dealing with hardware 
and software faults (integrated techniques) must be 
developed. 

In an earlier work [12] we have introduced a more 
efficient new integrated fault-tolerant technique called 
the Integrated Fault-Tolerant (IFT) technique, where 
both hardware (processors and communication 
channels) and software are subject to failures. The 
proposed technique has the capability of on-line fault 
diagnosis. In the following subsections we discuss the 
work. 
 
1.1. Dynamic Group Maximum Matching 

Concept 
In an earlier work [12] we have introduced the 
concept of the dynamic group maximum matching 
for grouping the system graph into groups of 
different sizes according to the tasks arriving at the 
system. We have also proposed the Dynamic Group 
Maximum Matching (DGMM) algorithm for finding 
the dynamic group maximum matching.  

The maximum number of hardware faults that a 
system can tolerate with respect to a task Ti is 
defined as the task hardware reliability degree thi. 
As a task hardware reliability degree increases, 
more redundancy is used. In [13, 14], the 
researchers assumed that all the tasks running in 
the system have equal hardware reliability degree t, 
and they partitioned the system into groups of size 
(t + 1).  

The concept of group maximum matching has 
been introduced by Hosseini in [13], which is a 
generalization of the classical maximum matching 
concept. The concept of the classical matching 
problem is used to group nodes of a graph into 2-
node disjoint groups. A generalization to the 
classical matching is to group the nodes into (t + 
1)-node disjoint groups. In classical maximum 
matching problem, 2-node nodes are grouped such 
that the number of groups is maximum. Similarly, 
the generalization maximum matching problem, 
nodes are grouped (each group is of size (t + 1)) 
such that the number of groups is maximum. Also, 
the researcher has proposed the Group Maximum 
Matching (GMM) algorithm for finding the group 
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maximum matching. In [14], the researchers have 
shown that the GMM algorithm most of the time 
generates a maximum number of groups and rarely 
generates one group less than the maximum 
number. One drawback of the group maximum 
matching concept relates to the system 
performance where the system resources may not 
be utilized efficiently because less critical tasks 
(tasks with hardware reliability degree thi  < t) will 
use more resources than what they need to 
maintain their reliability requirements. A second 
drawback of the concept relates to the system 
reliability. If a small t is used, then tasks with 
higher reliability requirements will run with lower 
hardware reliability degree. 

In [12], we have introduced the dynamic group 
maximum matching concept, which is introduced 
to overcome the above shortcoming and is a 
generalization of the group maximum matching 
concept. In this generalization, the system is 
partitioned into disjoint groups with different sizes 
dynamically. When a task Ti with the hardware 
reliability degree thi is scheduled by the scheduler 
for execution, a group of processors of size gi = 
thi + 1 is assigned to the task. We also have 
proposed the Dynamic Group Maximum Matching 
(DGMM) algorithm for finding the dynamic group 
maximum matching. The proposed algorithm is a 
greedy heuristic algorithm and attempts to avoid 
the isolation of the system processors and attempts 
to include them in groups. This is achieved by 
including the processors with lower degrees in 
groups first and then the processors with higher 
degrees. At the same time the DGMM algorithm 
attempts to minimize the time needed to release the 
correct outputs and maximize the on-line faults 
diagnoses capabilities. This is achieved by trying 
to increase the group connectivity. For example, 
consider a task Ti with the hardware reliability 
degree thi  = 2. If we can allocate the task Ti to a 
fully connected group of 5 processors with 2 faulty 
processors, we will get the correct output and at 
the same time we can diagnose the faulty 
processors in the group upon the execution of the 
task by the processors. However, if we allocate the 
task Ti to a linear array group of 5 processors, that 
may not be possible. The formal description of the 
DGMM algorithm and an illustrating example are 
given in [12]. 
 
1.2. Integrated Fault-Tolerant (IFT) 

Technique 
The ultimate goals for any computer system design 
are: reliable execution of tasks (high reliability) 
and on-time delivery of service (high performance). 
Thus, the ultimate goal is to concurrently optimize 
reliability and system performance, while noting 
how achieving each of the above goals separately 
affects the other one. For example, increasing 
software reliability means using more redundant 
software, thereby lowering system performance. 

Another example relates to fault diagnosis where 
there is a need to either run periodically diagnostic 
programs or use redundant resources. In both cases 
the system performance is degraded due to the 
extra time overhead spent to diagnose the faults. 

Our approach considers the viability of 
achieving the above goals simultaneously. In our 
work an attempt is made to maximize the system 
reliability and the system performance while 
concurrently diagnosing both hardware and 
software faults. In the following we will outline 
the proposed work: 
• High Reliability Approach: Our work 

considers the system as a whole, an 
integration of hardware and software. Here, 
both hardware failures and software failures 
are considered in contrast to the most of the 
existing works that have assumed that only 
one of them, not both, could be faulty. 

• High Performance Approach: In contrast to 
most of the existing works that have focused 
mainly on improving the system reliability 
and have used system resources lavishly, we 
attempt to maximize the performance 
concurrently. The following list some of our 
concerns: 
1. Since every system is fault-free most of 

the time, allocating a task Ti to (2thi + 
1) processors to tolerate thi hardware 
faults, as is done in some of the 
existing works, is a waste of the system 
resources. Instead, we allocate initially 
(thi + 1) processors to the task Ti, 
which is minimal for tolerating thi 
hardware faults, and in case of failures 
we add more processors as needed. A 
similar procedure is used for tolerating 
software failures. It is important to 
realize that software is fault-free most 
of the time as well. 

2. In earlier work we have proposed the 
Dynamic Group Maximum Matching 
(DGMM) algorithm for grouping the 
system graph. The DGMM algorithm 
always attempts to maximize the system 
performance by increasing the number 
of concurrent tasks in the system. 

3. On-Line Fault Diagnosis: In or work 
faults will be diagnosed by running user 
programs, in contrast to some of the 
existing works that require running 
diagnostic programs. By implementing 
an on-line fault diagnosis, the system 
will be continuously executing useful 
application programs instead of 
executing diagnostic programs for 
failure detection which add extra 
overhead and may not providing 100% 
fault coverage. 

The Integrated Fault-Tolerant (IFT) technique 
is devised for reliable task execution and on-line 
fault diagnosis, where processors, communication 
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channels, and software (application tasks) are 
subject to failures. For reliable execution of tasks, 
different program versions of each task are 
assigned to a group of processors. Processors are 
grouped using the DGMM algorithm. A task is 
released if at least (thi + 1) processors agree with 
each other on the outputs for at least (tsi + 1) 
different program versions and the outputs of all 
the program versions are the same, where thi 
denotes the upper bound for the number of faulty 
processors and communication channels (hardware 
reliability degree) and tsi denotes the upper bound 
for the number of faulty program versions 
(software reliability degree) that the system can 
tolerate with respect to a task Ti. 
 
1.2.1. Comparison Model of Computation 
In the Integrated Fault-Tolerant (IFT) approach, 
the comparison model works as follows. When two 
neighboring processors Pi and Pj  finish executing 
a program version Vkl of a task Tl, they exchange 
and compare their outputs and then the processor 
Pi obtains its test outcomes for the assigned task as 
follows: 
1. For every program version Vml of the task Tl 

executed by the processor Pi prior to the 
program version Vkl do 
(a) If the output of Pi for the program 

version Vkl agrees with the output of 
Pi for the program version Vml then 
i. aii (Vkl, Vml) = 0. 

(b) Else 
i. aii (Vkl, Vml) = 1. 

2. For every program version Vml of the task Tl 
executed by the neighboring processor Pj so 
far do 
(a) If the output of Pi for the program 

version Vkl agrees with the output of 
Pj for the program version Vml then 
i. aij (Vkl, Vml) = 0. 

(b) Else 
i. aij (Vkl, Vml) = 1. 

The neighboring processor Pj will follow similar 
steps to obtain its test outcomes. 
Remarks: 

1. aij and aji may not be the same. 
2. 1. A faulty processor, a faulty channel, a 

faulty program version or any 
combination of them could be the source 
of the fault. 

3. Processors Pi and Pj may produce the same 
output and agree with each other on the 
output for a program version, even if one (or 
both) of them are faulty or executing a faulty 
program version, if the fault does not affect 
the output. For example, a faulty register 

within a processor does not affect the output 
if it is not used in executing the program 
version. 

 
1.2.2. Disagreement Graph 
A disagreement graph DGi (Ni, Ei), where Ni is the 
set of nodes of DGi and Ei is the set of edges of 
DGi, with respect to a task Ti is obtained as 
follows. Every node X ∈ Ni contains some 
processors of the group Gi and some program 
versions of the task Ti, such that for every 
processor Pj ∈ X and processor Pk ∈ X, Pj and Pk 
agree with each other on the outputs for at least 
one program version (the same or different) of the 
task Ti. An edge exists between nodes X ∈ Ni  and 
Y ∈ Ni if there exists a disagreement between a 
processor Pj ∈ X and a processor Pk ∈ Y on the 
outputs for at least one program version (the same 
or different) of the task Ti and the processor Pj and 
the processor Pk are neighbors or j = k in the 
system G. Agreement operation has a transitivity 
property. That is if Pi and Pj agree with each other 
on the output for a program version Vli of the task 
Ti and in turn Pj and Pk agree with each other on 
the output for the program version Vli of the task 
Ti, then Pi and Pk agree with each other on the 
output for the program version Vli of the task Ti. 

An illustrating example of the IFT technique is given 
in [12]. 
 
1.3. Integrated Fault-Tolerant Scheduling 

Algorithms 
In [12], we have introduced several integrated fault-
tolerant scheduling algorithms. These scheduling 
algorithms are based on the Integrated Fault-Tolerant 
(IFT) technique and the Dynamic Group Maximum 
Matching (DGMM) algorithm. 

In this paper, due to the space limitations, we will 
limit our study of the effect of the IFT technique on 
system performance for only four scheduling algorithms 
and we will consider the rest of these scheduling 
algorithms in a follow up paper. Two performance 
metrics; system mean response time and percentage of 
completed tasks of specific type, will be evaluated for 
each one of the scheduling algorithms. 
 
1.3.1. Integrated Fault-Tolerant First Come, 

First served (FCFS) Scheduling Algorithm 
The Integrated Fault-Tolerant First-Come, First-Served 
(FCFS) scheduling algorithm work as follows. As tasks 
which may consist of more than one program version 
arrive at the system, they are queued up along with their 
group sizes (i.e, gi = task hardware reliability degree thi + 
1) and task software reliability degree tsi in a single task 
queue Q. When a task Ti is scheduled for execution, the 
DGMM algorithm is called to find the required group 
size for the task Ti. If the returned group size is equal to 
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the required group size, the first program version V1i of 
the task Ti is assigned to the group Gi for execution; 
otherwise, the DGMM algorithm is called to find another 
subgraph of size gi in a different part of the system graph. 
This process is repeated until either a group of size gi is 
obtained or the entire system graph is searched without 
success. In the former case, the first program version V1i 
of the task Ti is assigned to the group Gi for execution. In 
the latter case, the DGMM algorithm is called each time 
a task leaves the system or is inserted in the aborted task 
queue Qa , to find a group of the required size. If the 
returned subgraph for execution; otherwise, the DGMM 
algorithm is called to find a new subgraph is equal to the 
required size in a different part of he system graph. This 
process is repeated until either a group of the required 
size is obtained or the entire system graph is searched 
without success. In the former case, the first program 
version of the task is assigned to all the processors in the 
group for execution. In the latter case, the above process 
is repeated until either the required group size is obtained 
or all the tasks left the system and the task Ti still cannot 
find the required group size. In the former case, the first 
program version of the task is assigned to all the 
processors in the group for execution. In the latter case, 
the task is aborted. When a program version Vji of a task 
Ti completes its execution by all the processors in the 
group Gi, neighboring processors exchange and compare 
their outputs. Then, the disagreement graph DGi is 
obtained. A task Ti is released if at least (thi + 1) different 
processors agree with each other on the output for at least 
(tsi +1) different program versions and the output for all 
the program versions are the same; otherwise, if there are 
at least (thi + 1) processors which agree with each other 
on the outputs for (2 tsi) or fewer different program 
versions and there are two or more different outputs, then 
the next program version of the task Ti is assigned to the 
group Gi for execution. Otherwise, if there are at least (thi 
+ 1) processors which agree with each other on the 
outputs of (tsi +1) different program versions and there 
are three or more different outputs, then the task Ti is 
aborted; otherwise, the task group size is incremented by 
one (gi = gi + 1) and the DGMM algorithm is called to 
add one more neighboring processor to the processors in 
the group Gi. If the returned subgraph is equal to the 
required group size, the first program version V1i of the 
task Ti is assigned to the group Gi for execution; 
otherwise, the DGMM algorithm is called to find another 
subgraph equal to the task group size in a different part of 
the system graph. Calling the DGMM algorithm is 
repeated until either a group of size gi is obtained or the 
entire system graph is searched without success. In later 
case,  the task Ti  is aborted and added to the aborted task 
queue Qa for later execution. In the former case, the first 
program version is assigned to all the processors in the 
group for execution. The above process is repeated until 
the task is aborted, the task is aborted and inserted at the 
tail of the aborted task queue Qa , or the output of the task 
is released. The formal algorithm is given in [12]. 
 
1.3.2. Integrated Fault-Tolerant (FCFS + 

Smallest Fits First) Scheduling Algorithm 
The Integrated Fault-Tolerant (FCFS + Smallest 
Fits First) (FCFSSFF) scheduling algorithm works 

as follows. As tasks, which may consist of more 
than one program version, arrive at the system, 
they are queued up along with their group sizes 
(i.e., gi = task hardware reliability degree thi + 1) 
and task software reliability degree tsi in a single 
task queue Q. When a task Ti is scheduled for 
execution, the Dynamic Group Maximum Matching 
(DGMM) algorithm is called to find the required 
group size for the task Ti. If the returned group 
size by the DGMM algorithm is smaller than the 
required group size, then the returned group is 
allocated to the first program version V1j of the 
task Tj which has the smallest group size among 
the tasks in the task queue provided that the group 
size of the task Tj is not larger than the size of the 
returned group. Next, the DGMM algorithm is 
called to find another subgraph of size gi in a 
different part of the system graph to allocate the 
task Ti. This process is repeated until either a 
group of size gi is obtained or the entire system 
graph is searched without success. In the latter 
case, the task Ti is added to the aborted task queue 
Qa for later execution. In the former case, the first 
program version V1i of the task is Ti assigned to 
the returned group for execution. When a program 
version Vji of a task Ti completes its execution by 
all the processors of its group Gi, neighboring 
processors exchange and compare their outputs. 
Then, the disagreement graph DGi is obtained. A 
task Ti is released if at least (thi + 1) different 
processors agree with each other on the output for 
at least (tsi + 1) different program versions and the 
outputs of all the program versions are the same; 
otherwise, if there are at least (thi + 1) processors 
agree with each other on the output for (2tsi) or 
fewer different program versions and there are two 
or more different outputs, then the next program 
version of the task Ti is assigned to the group Gi 
for execution. Otherwise, if there are at least (thi + 
1) processors which agree with each other on the 
outputs of (2tsi + 1) different program versions and 
there are three or more different outputs, then the 
task Ti is aborted; otherwise, the task group size is 
incremented by one (gi = gi + 1), and the DGMM 
algorithm is called to add one more neighboring 
processor to the group Gi. Calling the DGMM 
algorithm is repeated until either a group of the 
required size is obtained or the entire graph is 
searched without success. In the latter case, the 
task Ti is aborted and added to the aborted task 
queue Qa for later execution. In the former case, 
the first program version of the task is assigned to 
the returned group for execution. The above 
process is repeated until the task is aborted, the 
task is aborted and added to the aborted task queue 
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Qa for later execution, or the output for the task is 
obtained. The formal algorithm is given [12].  
 
1.3.3. Integrated Fault-Tolerant (FCFS + 

Largest Fits First) Scheduling Algorithm 
The Integrated Fault-Tolerant (FCFS + Largest Fits 
First) (FCFSLFF) scheduling algorithm works as 
follows. As tasks, which may consist of more than 
one program version, arrive at the system, they are 
queued up along with their group sizes (i.e., gi = 
task hardware reliability degree thi + 1) and task 
software reliability degree tsi in a single task 
queue Q. When a task Ti is scheduled for execution, 
the Dynamic Group Maximum Matching (DGMM) 
algorithm is called to find the required group size 
for the task Ti. If the returned group size by the 
DGMM algorithm is smaller than the required 
group size, then the returned group is allocated to 
the first program version V1j of the task Tj which 
has the largest group size among the tasks in the 
task queue provided that the group size of the task 
Tj is not larger than the size of the returned group. 
Next, the DGMM algorithm is called to find 
another subgraph of size gi in a different part of 
the system graph to allocate the task Ti. This 
process is repeated until either a group of size gi is 
obtained or the entire system graph is searched 
without success. In the latter case, the task Ti is 
added to the aborted task queue Qa for later 
execution. In the former case, the first program 
version V1i of the task Ti is assigned to the 
returned group for execution. When a program 
version Vji of a task Ti completes its execution by 
all the processors of its group Gi, neighboring 
processors exchange and compare their outputs. 
Then, the disagreement graph DGi is obtained. A 
task Ti is released if at least (thi + 1) different 
processors agree with each other on the output for 
at least (tsi + 1) different program versions and the 
outputs of all the program versions are the same; 
otherwise, if there are at least (thi + 1) processors 
agree with each other on the output for (2tsi) or 
fewer different program versions and there are two 
or more different outputs, then the next program 
version of the task Ti is assigned to the group Gi 
for execution. Otherwise, if there are at least (thi + 
1) processors which agree with each other on the 
outputs of (2tsi + 1) different program versions and 
there are three or more different outputs, then the 
task Ti is aborted; otherwise, the task group size is 
incremented by one (gi = gi + 1), and the DGMM 
algorithm is called to add one more neighboring 
processor to the group Gi. Calling the DGMM 
algorithm is repeated until either a group of the 
required size is obtained or the entire graph is 
searched without success. In the latter case, the 

task Ti is aborted and added to the aborted task 
queue Qa for later execution. In the former case, 
the first program version of the task is assigned to 
the returned group for execution. The above 
process is repeated until the task is aborted, the 
task is aborted and added to the aborted task queue 
Qa for later execution, or the output for the task is 
obtained. The formal algorithm is given in [12]. 
 
1.3.4. Integrated Fault-Tolerant (FCFS + First 

Fits First) Scheduling Algorithm 
The Integrated Fault-Tolerant (FCFS + first Fits 
First) (FCFSFFF) scheduling algorithm works as 
follows. As tasks, which may consist of more than 
one program version, arrive at the system, they are 
queued up along with their group sizes (i.e., gi = 
task hardware reliability degree thi + 1) and task 
software reliability degree tsi in a single task 
queue Q. When a task Ti is scheduled for execution, 
the Dynamic Group Maximum Matching (DGMM) 
algorithm is called to find the required group size 
for the task Ti. If the returned group size by the 
DGMM algorithm is smaller than the required 
group size, then the returned group is allocated to 
the first program version V1j of the first task Tj in 
the task queue that fits the returned group. Next, 
the DGMM algorithm is called to find another 
subgraph of size gi in a different part of the system 
graph to allocate the task Ti. This process is 
repeated until either a group of size gi is obtained 
or the entire system graph is searched without 
success. In the latter case, the task Ti is added to 
the aborted task queue Qa for later execution. In 
the former case, the first program version V1i of 
the task Ti is assigned to the returned group for 
execution. When a program version Vji of a task Ti 
completes its execution by all the processors of its 
group Gi, neighboring processors exchange and 
compare their outputs. Then, the disagreement 
graph DGi is obtained. A task Ti is released if at 
least (thi + 1) different processors agree with each 
other on the output for at least (tsi + 1) different 
program versions and the outputs of all the 
program versions are the same; otherwise, if there 
are at least (thi + 1) processors agree with each 
other on the output for (2tsi) or fewer different 
program versions and there are two or more 
different outputs, then the next program version of 
the task Ti is assigned to the group Gi for 
execution. Otherwise, if there are at least (thi + 1) 
processors which agree with each other on the 
outputs of (2tsi + 1) different program versions and 
there are three or more different outputs, then the 
task Ti is aborted; otherwise, the task group size is 
incremented by one (gi = gi + 1), and the DGMM 
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algorithm is called to add one more neighboring 
processor to the group Gi. Calling the DGMM 
algorithm is repeated until either a group of the 
required size is obtained or the entire graph is 
searched without success. In the latter case, the 
task Ti is aborted and added to the aborted task 
queue Qa for later execution. In the former case, 
the first program version of the task is assigned to 
the returned group for execution. The above 
process is repeated until the task is aborted, the 
task is aborted and added to the aborted task queue 
Qa for later execution, or the output for the task is 
obtained. The formal algorithm is given in [12]. 
 
2. Simulation Model 
The features of the simulator are summarized as follows 
[12]: 
1. The computing environment is an M × M torus 

system (M ≥ 1) connected to a host machine where 
scheduling and obtaining tasks disagreement graphs 
take place. 

2. Each task (program) Ti which arrives at the system 
along with its reliability degree ti will be assigned to 
a group Gi of size gi (initially gi = ti + 1). 

3. Tasks interarrival times are exponentially distributed 
with the average arrival rate λ. 

4. Tasks mean execution times are exponentially 
distributed. Tasks arrived at the system could have 
different mean execution times. 

 
3. Simulation Results 
In our simulation we consider a 6 x 6 torus system (M = 
6). See Figure 1. We assume that there are long tasks and 
short tasks.  Mean execution time of long task is 10 time 
units and mean execution time of short task is 1 time unit. 
Tasks arrive at the system with the probability of being of 
long task equal to (X) and being of short task equal to (1- 
X); in other words, task length probability has a Bernoulli 
probability distribution. All the results given in this 
section assume X = 0.5. Also, we assume that the task 
software reliability tsi = 1 (each task has three program 
versions, with at least two fault free versions). The 
probability that the first two versions of a task being fault 
free (third version will not be executed) equal to (Y); in 
other words, third version execution probability has a 
Bernoulli probability distribution. All the results given in 
this section assume Y = 0.5. Furthermore, we assume that 
there are three types of task hardware reliability degrees: 
thi = 0 (type0), thi  = 1 (type1) and thi = 2 (type2). Tasks 
arrive at the system with the probability of being of type0 
equal to (Z0), of being of type1 equal to (Z1), and of being 
of type2 equal to (Z2). In other words, tasks hardware 
reliability degrees probability has a Binomial probability 
distribution. All the results given in this section assume 
Zi = 1/3, for i = 0, 1, 2. Each processor in the system has 
the probability (reliability) of being fault free equal to 
(Rp); in other words, processor reliability has a Bernoulli 
probability distribution. Each communication link in the 
system has the probability of being fault-free equal to (Rl); 
in other words, communication link reliability has also a 

Bernoulli probability distribution. In our simulation, we 
consider four failure cases with each type of tasks 
software reliability. First case, processors and 
communication links are fault-free, Rp = 1 and Rl = 1.  
Second case, only communication links are subject to 
failures, Rp = 1 and Rl = 0.9. Third case, only processors 
are subject to failures, Rp = 0.9 and Rl = 1. Fourth case, 
both processors and communication links are subject to 
failures, Rp = 0.9 and Rl = 0.9. 

Our simulation terminates when the number of tasks 
released by the system is equal to 3000 tasks.  The first 
300 tasks released by the system are discarded, so the 
initial transient state of the system does not affect the 
simulation results.  Each performance metric reading is 
an average over 10 runs.  

We evaluate two performance metrics.  The first 
metric is system mean response time. The second metric 
is percentage of tasks of typei completed, for i = 0, 1, 2. 
This metric is defined as follows:  
 
percentage of tasks of typei completed during simulation 
time = 

 
This metric is intended to complement the former 
performance metric. For instance, if a scheduling policy 
favors running the shorter tasks over the longer tasks for 
improving the system mean response time, one is 
interested to know what the trade offs. In other words; 
how much the percentage of longer tasks completed 
during the simulation time is decreased. 
 
3.1. FCFS Scheduling Algorithm 

Performance 
Figure 2 shows system average response time under the 
Integrated Fault-Tolerant First-Come, First-Served 
(FCFS) scheduling algorithm. From the plot we can see 
that as the task arrival rate λ increases, the average 
response time also increases.  

Figures 3, 4, 5 and 6 show the percentage of tasks of 
typei completed, for i = 0, 1, 2, by FCFS scheduling 
algorithm, under each one of the four failure cases 
respectively. From the plots we can see that when the 
task arrival rate λ equal to 1, the percentage of tasks 
completed of each tasks type under the four failure cases 
is almost the same. Also, we can see that as arrival rate λ 
increases, the percentage of tasks completed of each tasks 
type decreases. Furthermore, from the figures we can see 
that the percentage of tasks completed of all tasks types 
under each one of the failure cases is almost the same. In 
other words, FCFS does not favor one type of task over 
another type of task for execution.  
 
3.2. FCFSSFF Scheduling Algorithm 

Performance 
Figure 7 shows system average response time under the 
Integrated Fault-Tolerant (FCFS + Smallest Fits 
First) (FCFSSFF) scheduling algorithm. In Figure 7, up 

100×
arrivedtypeoftasksofnumber

completedtypeoftasksofnumber

i

i

)1(
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to a point (in our experiment arrival rate = 2) as task 
arrival rate λ increases, the system average response time 
also increases. Beyond that point, as arrival rate increases, 
the system average response time decreases. This is due 
to the fact that when the task arrival rate λ is high, more 
tasks will be queued up in the task queue and if the 
returned group size by the DGMM algorithm is smaller 
than the required size, the FCFSSFF scheduling 
algorithm will assign the returned group to the task with 
the smallest group size in the task queue. This means that 
tasks with small group sizes will be executed first; i.e., 
more concurrent tasks running on the system. With a 
higher task arrival rate (in our experiment arrival rate > 
5), as arrival rate increases, the system average response 
time also increases. This is due to that the fact the length 
of the task queue will grow longer. Thus, even tasks with 
small group size have to wait longer in the task queue 
before being schedule for execution. 

Figures 8, 9, 10 and 11 show the percentage of tasks 
of typei completed, for i = 0, 1, 2, by FCFSSFF 
scheduling algorithm, under each one of the four failure 
cases respectively. From the plots we can see that when 
the task arrival rate λ equal to 1, the percentage of tasks 
completed of each tasks type under the four failure cases 
is almost the same. Also, we can see that as arrival rate λ 
increases, the percentage of tasks completed of each tasks 
type decreases. Furthermore, we can see that as the task 
arrival rate λ increases, the percentage of tasks completed 
with large group is lower than the percentage of tasks 
completed with small group. This is due to the fact that 
when the task arrival rate λ is high, more tasks will be 
queued up in the task queue and if the returned group size 
by the DGMM algorithm is smaller than the required size, 
the FCFSSFF scheduling algorithm will assign the 
returned group to the task with the smallest group size in 
the task queue. This means that tasks with small group 
sizes will be executed first, in other words, FCFSSFF 
scheduling algorithm favors tasks with small group over 
tasks with large group for execution. 
 
3.3. FCFSLFF Scheduling Algorithm 

Performance 
Figure 12 shows system average response time under the 
Integrated Fault-Tolerant (FCFS + Largest Fits 
First) (FCFSLFF) scheduling algorithm. In Figure 12, 
we can see that as task arrival rate increases the system 
average response time also increases. 

Figures 13, 14, 15 and 16 show the percentage of 
tasks of typei completed, for i = 0, 1, 2, by FCFSLFF 
scheduling algorithm, under each one of the four failure 
cases respectively. From the plots we can see that when 
the task arrival rate λ equal to 1, the percentage of tasks 
completed of each tasks type under the four failure cases 
is almost the same. Also, we can see that as arrival rate λ 
increases, the percentage of tasks completed of each tasks 
type decreases. Furthermore, from the Figure 13 we can 
see that the percentage of tasks completed of all tasks 
types under the first failure case is almost the same. 
Contrarily in Figures 14, 15 and 16 we can see that as the 
task arrival rate λ increases, the percentage of tasks 
completed with large group is lower than the percentage 
of tasks completed with small group. This is due to the 

fact that when the task arrival rate λ is high, more tasks 
will be queued up in the task queue and under the last 
three failure cases, the DGMM algorithm will return 
small group sizes, thus, the FCFSLFF scheduling 
algorithm will assign the returned group to task with 
small group size. This means that if the system contains 
faulty components, FCFSLFF scheduling algorithm 
favors tasks with small group over tasks with large group 
for execution. 
 
3.4. FCFSFFF Scheduling Algorithm 

Performance 
Figure 17 shows system average response time under the 
Integrated Fault-Tolerant (FCFS + first Fits First) 
(FCFSFFF) scheduling algorithm. In Figure 17, as task 
arrival rate increases the system average response time 
also increases. 

Figures 18, 19, 20 and 21 show the percentage of 
tasks of typei completed, for i = 0, 1, 2, by FCFSFFF 
scheduling algorithm, under each one of the four failure 
cases respectively. From the plots we can see that when 
the task arrival rate λ equal to 1, the percentage of tasks 
completed of each tasks type under the four failure cases 
is almost the same. Also, we can see that as arrival rate λ 
increases, the percentage of tasks completed of each tasks 
type decreases. Furthermore, from the Figure 18 we can 
see that the percentage of tasks completed of all tasks 
types under the first failure case is almost the same. 
Contrarily in Figures 19, 20 and 21 we can see that as the 
task arrival rate λ increases, the percentage of tasks 
completed with large group is lower than the percentage 
of tasks completed with small group. This is due to the 
fact that when the task arrival rate λ is high, more tasks 
will be queued up in the task queue and under the last 
three failure cases, the DGMM algorithm will return 
small group sizes, thus, the FCFSFFF scheduling 
algorithm will assign the returned group to task with 
small group size. This means that if the system contains 
faulty components, FCFSFFF scheduling algorithm 
favors tasks with small group over tasks with large group 
for execution. 
 
4. Conclusion 
In this work, via four scheduling algorithms, the 
performance of the Integrated Fault-Tolerant (IFT) 
technique was studied. Two performance metrics were 
evaluated: system average response time and percentage 
of completed tasks of specific type. 

Under the Integrated Fault-Tolerant First-Come, 
First-Served (FCFS) scheduling algorithm, our 
simulation study showed that under the conditions 
experimented here, as arrival rate λ increases, the system 
average response time also increases.  

Under the Integrated Fault-Tolerant First-Come, 
First-Served + Smallest Fits First (FCFSSFF) scheduling 
algorithm, our simulation study showed that under the 
conditions experimented here, beyond a point, as arrival 
rate λ increases, the system average response time 
decreases. With a higher task arrival rate, the system 
average response time increases. 

Under the Integrated Fault-Tolerant First-Come, 
First-Served + Largest Fits First (FCFSLFF) scheduling 
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algorithm, our simulation study showed that under the 
conditions experimented here, as arrival rate λ increases, 
the system average response time also increases.  

Under the Integrated Fault-Tolerant First-Come, 
First-Served + First Fit First (FCFSFFF) scheduling 
algorithm, our simulation study showed that under the 
conditions experimented here, as arrival rate λ increases, 
the system average response time also increases.  

Also, the study showed that FCFSSFF 
scheduling algorithm average response time 
outperforms the other algorithms. Furthermore, it 
showed that FCFS scheduling algorithm gives the 
highest average response time. 

In addition, the study showed that FCFSSFF 
scheduling algorithm, FCFSLFF scheduling algorithm 
and FCFSFFF scheduling algorithm favor tasks with 
small group sizes over tasks with large group sizes for 
execution. Contrarily, FCFS scheduling algorithm does 
not favor tasks with small group over tasks with large 
group sizes for execution. 
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Figure 1: 6 × 6 Torus System 
 

 

                                            Figure 2: System  Mean Response Time under FCFS, thi  =0,1,2
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                                 Figure 3: Percentage of Task completed under FCFS, LR=1, PR=1
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                                Figure 4: Percentage of Task completed under FCFS, LR=0.9, PR=0.9
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                                Figure 5: Percentage of Task completed under FCFS, LR=1, PR=0.9
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                                Figure 6: Percentage of Task completed under FCFS, LR=0.9   ,  PR=0.9
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                  Figure 7: System Mean Response Time under FCFSSFF, thi  =0,1,2
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                                Figure 8: Percentage of Task completed under FCFSSFF,  LR=1, PR=1
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                                 Figure 9: Percentage of Task completed under FCFSSFF,  LR=0.9, PR=1
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                                Figure 10: Percentage of Task completed under FCFSSFF,  LR=1, PR=0.9
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                                Figure 11: Percentage of Task completed under FCFSSFF, LR=0.9, PR=0.9
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               Figure 12: System Mean Response Time Under FCFSLFF,   thi = 0, 1, 2
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                                 Figure 13: Percentage of Task completed under FCFSLFF,   LR=1  ,  PR=1 
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 Figure 14: Percentage of Task completed under FCFSLFF,  LR=0.9   ,  PR=1
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                                Figure 15: Percentage of Task completed under FCFSLFF,   LR=1, PR=0.9
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                                Figure 16: Percentage of Task completed under FCFSLFF,LR=0.9   ,  PR=0.9
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               Figure 17: System Mean Response Time Under FCFSFFF,        thi = 0, 1, 2
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             Figure 18: Percentage ofTask completed under FCFSFFF,  LR=1  ,  PR=1
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                                 Figure 19: Percentage of Task completed under FCFSFFF, LR=0.9  ,  PR=1
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                Figure 20: Percentage ofTask completed under FCFSFFF, LR=1  ,  PR=0.9
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                                 Figure 21: Percentage ofTask completed under FCFSFFF, LR=0.9   ,  PR=0.9
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