
 7

Performance Evaluation of Integrated Fault-Tolerant Technique: Simulation Study

O. A. Abulnaja*, N. M. Saadi**

* King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: abulnaja@kaau.edu.sa

** Faculty of Technology, Jeddah, Saudi Arabia
e-mail: nms178@hotmail.com

Abstract
In earlier work we have proposed the concept of the
dynamic group maximum matching for grouping the
system graph into groups of different sizes according to
the tasks arriving at the system. Also, we have developed
a more efficient integrated fault-tolerant technique for
ultra-reliable execution of tasks where both
hardware (processors and communication channels)
and software failures, and on-line fault diagnosis
are considered. The proposed approach called the
Integrated Fault-Tolerant (IFT) approach.
Furthermore, we have proposed integrated fault-tolerant
scheduling algorithms. The introduced algorithms are
based on the dynamic group maximum matching concept
and the IFT technique.

In this work, we studied the effect of the IFT
technique on system performance for four of the
proposed scheduling algorithms. The algorithms are:
Integrated Fault-Tolerant First-Come, First-Served
(FCFS), Integrated Fault-Tolerant (FCFS + Smallest
Fits First) (FCFSSFF) scheduling algorithm, Integrated
Fault-Tolerant (FCFS + Largest Fits First) (FCFSLFF)
scheduling algorithm, and Integrated Fault-Tolerant
(FCFS + First Fits First) (FCFSFFF) scheduling
algorithm. We considered two performance metrics:
system mean response time and percentage of completed
tasks of specific type.

Keywords: Performance Evaluation; Fault Tolerance;
Fault Diagnosis; Task Scheduling; Networks; Systems
Reliability.

1. Introduction
Various studies have shown that both hardware and
software are subject to failures. However, the
majority of the existing works have dealt with the
problem by considering that either software is
fault-free but hardware is subject to failure, for
instance see [1] - [4], or hardware is fault-free but
software is subject to failure, for instance see [5] -
[11]. Thus, techniques for dealing with hardware
and software faults (integrated techniques) must be
developed.

In an earlier work [12] we have introduced a more
efficient new integrated fault-tolerant technique called
the Integrated Fault-Tolerant (IFT) technique, where
both hardware (processors and communication
channels) and software are subject to failures. The
proposed technique has the capability of on-line fault
diagnosis. In the following subsections we discuss the
work.

1.1. Dynamic Group Maximum Matching

Concept
In an earlier work [12] we have introduced the
concept of the dynamic group maximum matching
for grouping the system graph into groups of
different sizes according to the tasks arriving at the
system. We have also proposed the Dynamic Group
Maximum Matching (DGMM) algorithm for finding
the dynamic group maximum matching.

The maximum number of hardware faults that a
system can tolerate with respect to a task Ti is
defined as the task hardware reliability degree thi.
As a task hardware reliability degree increases,
more redundancy is used. In [13, 14], the
researchers assumed that all the tasks running in
the system have equal hardware reliability degree t,
and they partitioned the system into groups of size
(t + 1).

The concept of group maximum matching has
been introduced by Hosseini in [13], which is a
generalization of the classical maximum matching
concept. The concept of the classical matching
problem is used to group nodes of a graph into 2-
node disjoint groups. A generalization to the
classical matching is to group the nodes into (t +
1)-node disjoint groups. In classical maximum
matching problem, 2-node nodes are grouped such
that the number of groups is maximum. Similarly,
the generalization maximum matching problem,
nodes are grouped (each group is of size (t + 1))
such that the number of groups is maximum. Also,
the researcher has proposed the Group Maximum
Matching (GMM) algorithm for finding the group

AIML Journal, Volume (5), Issue (2), June, 2005

 8

maximum matching. In [14], the researchers have
shown that the GMM algorithm most of the time
generates a maximum number of groups and rarely
generates one group less than the maximum
number. One drawback of the group maximum
matching concept relates to the system
performance where the system resources may not
be utilized efficiently because less critical tasks
(tasks with hardware reliability degree thi < t) will
use more resources than what they need to
maintain their reliability requirements. A second
drawback of the concept relates to the system
reliability. If a small t is used, then tasks with
higher reliability requirements will run with lower
hardware reliability degree.

In [12], we have introduced the dynamic group
maximum matching concept, which is introduced
to overcome the above shortcoming and is a
generalization of the group maximum matching
concept. In this generalization, the system is
partitioned into disjoint groups with different sizes
dynamically. When a task Ti with the hardware
reliability degree thi is scheduled by the scheduler
for execution, a group of processors of size gi =
thi + 1 is assigned to the task. We also have
proposed the Dynamic Group Maximum Matching
(DGMM) algorithm for finding the dynamic group
maximum matching. The proposed algorithm is a
greedy heuristic algorithm and attempts to avoid
the isolation of the system processors and attempts
to include them in groups. This is achieved by
including the processors with lower degrees in
groups first and then the processors with higher
degrees. At the same time the DGMM algorithm
attempts to minimize the time needed to release the
correct outputs and maximize the on-line faults
diagnoses capabilities. This is achieved by trying
to increase the group connectivity. For example,
consider a task Ti with the hardware reliability
degree thi = 2. If we can allocate the task Ti to a
fully connected group of 5 processors with 2 faulty
processors, we will get the correct output and at
the same time we can diagnose the faulty
processors in the group upon the execution of the
task by the processors. However, if we allocate the
task Ti to a linear array group of 5 processors, that
may not be possible. The formal description of the
DGMM algorithm and an illustrating example are
given in [12].

1.2. Integrated Fault-Tolerant (IFT)

Technique
The ultimate goals for any computer system design
are: reliable execution of tasks (high reliability)
and on-time delivery of service (high performance).
Thus, the ultimate goal is to concurrently optimize
reliability and system performance, while noting
how achieving each of the above goals separately
affects the other one. For example, increasing
software reliability means using more redundant
software, thereby lowering system performance.

Another example relates to fault diagnosis where
there is a need to either run periodically diagnostic
programs or use redundant resources. In both cases
the system performance is degraded due to the
extra time overhead spent to diagnose the faults.

Our approach considers the viability of
achieving the above goals simultaneously. In our
work an attempt is made to maximize the system
reliability and the system performance while
concurrently diagnosing both hardware and
software faults. In the following we will outline
the proposed work:
• High Reliability Approach: Our work

considers the system as a whole, an
integration of hardware and software. Here,
both hardware failures and software failures
are considered in contrast to the most of the
existing works that have assumed that only
one of them, not both, could be faulty.

• High Performance Approach: In contrast to
most of the existing works that have focused
mainly on improving the system reliability
and have used system resources lavishly, we
attempt to maximize the performance
concurrently. The following list some of our
concerns:
1. Since every system is fault-free most of

the time, allocating a task Ti to (2thi +
1) processors to tolerate thi hardware
faults, as is done in some of the
existing works, is a waste of the system
resources. Instead, we allocate initially
(thi + 1) processors to the task Ti,
which is minimal for tolerating thi
hardware faults, and in case of failures
we add more processors as needed. A
similar procedure is used for tolerating
software failures. It is important to
realize that software is fault-free most
of the time as well.

2. In earlier work we have proposed the
Dynamic Group Maximum Matching
(DGMM) algorithm for grouping the
system graph. The DGMM algorithm
always attempts to maximize the system
performance by increasing the number
of concurrent tasks in the system.

3. On-Line Fault Diagnosis: In or work
faults will be diagnosed by running user
programs, in contrast to some of the
existing works that require running
diagnostic programs. By implementing
an on-line fault diagnosis, the system
will be continuously executing useful
application programs instead of
executing diagnostic programs for
failure detection which add extra
overhead and may not providing 100%
fault coverage.

The Integrated Fault-Tolerant (IFT) technique
is devised for reliable task execution and on-line
fault diagnosis, where processors, communication

AIML Journal, Volume (5), Issue (2), June, 2005

 9

channels, and software (application tasks) are
subject to failures. For reliable execution of tasks,
different program versions of each task are
assigned to a group of processors. Processors are
grouped using the DGMM algorithm. A task is
released if at least (thi + 1) processors agree with
each other on the outputs for at least (tsi + 1)
different program versions and the outputs of all
the program versions are the same, where thi
denotes the upper bound for the number of faulty
processors and communication channels (hardware
reliability degree) and tsi denotes the upper bound
for the number of faulty program versions
(software reliability degree) that the system can
tolerate with respect to a task Ti.

1.2.1. Comparison Model of Computation
In the Integrated Fault-Tolerant (IFT) approach,
the comparison model works as follows. When two
neighboring processors Pi and Pj finish executing
a program version Vkl of a task Tl, they exchange
and compare their outputs and then the processor
Pi obtains its test outcomes for the assigned task as
follows:
1. For every program version Vml of the task Tl

executed by the processor Pi prior to the
program version Vkl do
(a) If the output of Pi for the program

version Vkl agrees with the output of
Pi for the program version Vml then
i. aii (Vkl, Vml) = 0.

(b) Else
i. aii (Vkl, Vml) = 1.

2. For every program version Vml of the task Tl
executed by the neighboring processor Pj so
far do
(a) If the output of Pi for the program

version Vkl agrees with the output of
Pj for the program version Vml then
i. aij (Vkl, Vml) = 0.

(b) Else
i. aij (Vkl, Vml) = 1.

The neighboring processor Pj will follow similar
steps to obtain its test outcomes.
Remarks:

1. aij and aji may not be the same.
2. 1. A faulty processor, a faulty channel, a

faulty program version or any
combination of them could be the source
of the fault.

3. Processors Pi and Pj may produce the same
output and agree with each other on the
output for a program version, even if one (or
both) of them are faulty or executing a faulty
program version, if the fault does not affect
the output. For example, a faulty register

within a processor does not affect the output
if it is not used in executing the program
version.

1.2.2. Disagreement Graph
A disagreement graph DGi (Ni, Ei), where Ni is the
set of nodes of DGi and Ei is the set of edges of
DGi, with respect to a task Ti is obtained as
follows. Every node X ∈ Ni contains some
processors of the group Gi and some program
versions of the task Ti, such that for every
processor Pj ∈ X and processor Pk ∈ X, Pj and Pk
agree with each other on the outputs for at least
one program version (the same or different) of the
task Ti. An edge exists between nodes X ∈ Ni and
Y ∈ Ni if there exists a disagreement between a
processor Pj ∈ X and a processor Pk ∈ Y on the
outputs for at least one program version (the same
or different) of the task Ti and the processor Pj and
the processor Pk are neighbors or j = k in the
system G. Agreement operation has a transitivity
property. That is if Pi and Pj agree with each other
on the output for a program version Vli of the task
Ti and in turn Pj and Pk agree with each other on
the output for the program version Vli of the task
Ti, then Pi and Pk agree with each other on the
output for the program version Vli of the task Ti.

An illustrating example of the IFT technique is given
in [12].

1.3. Integrated Fault-Tolerant Scheduling

Algorithms
In [12], we have introduced several integrated fault-
tolerant scheduling algorithms. These scheduling
algorithms are based on the Integrated Fault-Tolerant
(IFT) technique and the Dynamic Group Maximum
Matching (DGMM) algorithm.

In this paper, due to the space limitations, we will
limit our study of the effect of the IFT technique on
system performance for only four scheduling algorithms
and we will consider the rest of these scheduling
algorithms in a follow up paper. Two performance
metrics; system mean response time and percentage of
completed tasks of specific type, will be evaluated for
each one of the scheduling algorithms.

1.3.1. Integrated Fault-Tolerant First Come,

First served (FCFS) Scheduling Algorithm
The Integrated Fault-Tolerant First-Come, First-Served
(FCFS) scheduling algorithm work as follows. As tasks
which may consist of more than one program version
arrive at the system, they are queued up along with their
group sizes (i.e, gi = task hardware reliability degree thi +
1) and task software reliability degree tsi in a single task
queue Q. When a task Ti is scheduled for execution, the
DGMM algorithm is called to find the required group
size for the task Ti. If the returned group size is equal to

AIML Journal, Volume (5), Issue (2), June, 2005

 10

the required group size, the first program version V1i of
the task Ti is assigned to the group Gi for execution;
otherwise, the DGMM algorithm is called to find another
subgraph of size gi in a different part of the system graph.
This process is repeated until either a group of size gi is
obtained or the entire system graph is searched without
success. In the former case, the first program version V1i
of the task Ti is assigned to the group Gi for execution. In
the latter case, the DGMM algorithm is called each time
a task leaves the system or is inserted in the aborted task
queue Qa , to find a group of the required size. If the
returned subgraph for execution; otherwise, the DGMM
algorithm is called to find a new subgraph is equal to the
required size in a different part of he system graph. This
process is repeated until either a group of the required
size is obtained or the entire system graph is searched
without success. In the former case, the first program
version of the task is assigned to all the processors in the
group for execution. In the latter case, the above process
is repeated until either the required group size is obtained
or all the tasks left the system and the task Ti still cannot
find the required group size. In the former case, the first
program version of the task is assigned to all the
processors in the group for execution. In the latter case,
the task is aborted. When a program version Vji of a task
Ti completes its execution by all the processors in the
group Gi, neighboring processors exchange and compare
their outputs. Then, the disagreement graph DGi is
obtained. A task Ti is released if at least (thi + 1) different
processors agree with each other on the output for at least
(tsi +1) different program versions and the output for all
the program versions are the same; otherwise, if there are
at least (thi + 1) processors which agree with each other
on the outputs for (2 tsi) or fewer different program
versions and there are two or more different outputs, then
the next program version of the task Ti is assigned to the
group Gi for execution. Otherwise, if there are at least (thi
+ 1) processors which agree with each other on the
outputs of (tsi +1) different program versions and there
are three or more different outputs, then the task Ti is
aborted; otherwise, the task group size is incremented by
one (gi = gi + 1) and the DGMM algorithm is called to
add one more neighboring processor to the processors in
the group Gi. If the returned subgraph is equal to the
required group size, the first program version V1i of the
task Ti is assigned to the group Gi for execution;
otherwise, the DGMM algorithm is called to find another
subgraph equal to the task group size in a different part of
the system graph. Calling the DGMM algorithm is
repeated until either a group of size gi is obtained or the
entire system graph is searched without success. In later
case, the task Ti is aborted and added to the aborted task
queue Qa for later execution. In the former case, the first
program version is assigned to all the processors in the
group for execution. The above process is repeated until
the task is aborted, the task is aborted and inserted at the
tail of the aborted task queue Qa , or the output of the task
is released. The formal algorithm is given in [12].

1.3.2. Integrated Fault-Tolerant (FCFS +

Smallest Fits First) Scheduling Algorithm
The Integrated Fault-Tolerant (FCFS + Smallest
Fits First) (FCFSSFF) scheduling algorithm works

as follows. As tasks, which may consist of more
than one program version, arrive at the system,
they are queued up along with their group sizes
(i.e., gi = task hardware reliability degree thi + 1)
and task software reliability degree tsi in a single
task queue Q. When a task Ti is scheduled for
execution, the Dynamic Group Maximum Matching
(DGMM) algorithm is called to find the required
group size for the task Ti. If the returned group
size by the DGMM algorithm is smaller than the
required group size, then the returned group is
allocated to the first program version V1j of the
task Tj which has the smallest group size among
the tasks in the task queue provided that the group
size of the task Tj is not larger than the size of the
returned group. Next, the DGMM algorithm is
called to find another subgraph of size gi in a
different part of the system graph to allocate the
task Ti. This process is repeated until either a
group of size gi is obtained or the entire system
graph is searched without success. In the latter
case, the task Ti is added to the aborted task queue
Qa for later execution. In the former case, the first
program version V1i of the task is Ti assigned to
the returned group for execution. When a program
version Vji of a task Ti completes its execution by
all the processors of its group Gi, neighboring
processors exchange and compare their outputs.
Then, the disagreement graph DGi is obtained. A
task Ti is released if at least (thi + 1) different
processors agree with each other on the output for
at least (tsi + 1) different program versions and the
outputs of all the program versions are the same;
otherwise, if there are at least (thi + 1) processors
agree with each other on the output for (2tsi) or
fewer different program versions and there are two
or more different outputs, then the next program
version of the task Ti is assigned to the group Gi
for execution. Otherwise, if there are at least (thi +
1) processors which agree with each other on the
outputs of (2tsi + 1) different program versions and
there are three or more different outputs, then the
task Ti is aborted; otherwise, the task group size is
incremented by one (gi = gi + 1), and the DGMM
algorithm is called to add one more neighboring
processor to the group Gi. Calling the DGMM
algorithm is repeated until either a group of the
required size is obtained or the entire graph is
searched without success. In the latter case, the
task Ti is aborted and added to the aborted task
queue Qa for later execution. In the former case,
the first program version of the task is assigned to
the returned group for execution. The above
process is repeated until the task is aborted, the
task is aborted and added to the aborted task queue

AIML Journal, Volume (5), Issue (2), June, 2005

 11

Qa for later execution, or the output for the task is
obtained. The formal algorithm is given [12].

1.3.3. Integrated Fault-Tolerant (FCFS +

Largest Fits First) Scheduling Algorithm
The Integrated Fault-Tolerant (FCFS + Largest Fits
First) (FCFSLFF) scheduling algorithm works as
follows. As tasks, which may consist of more than
one program version, arrive at the system, they are
queued up along with their group sizes (i.e., gi =
task hardware reliability degree thi + 1) and task
software reliability degree tsi in a single task
queue Q. When a task Ti is scheduled for execution,
the Dynamic Group Maximum Matching (DGMM)
algorithm is called to find the required group size
for the task Ti. If the returned group size by the
DGMM algorithm is smaller than the required
group size, then the returned group is allocated to
the first program version V1j of the task Tj which
has the largest group size among the tasks in the
task queue provided that the group size of the task
Tj is not larger than the size of the returned group.
Next, the DGMM algorithm is called to find
another subgraph of size gi in a different part of
the system graph to allocate the task Ti. This
process is repeated until either a group of size gi is
obtained or the entire system graph is searched
without success. In the latter case, the task Ti is
added to the aborted task queue Qa for later
execution. In the former case, the first program
version V1i of the task Ti is assigned to the
returned group for execution. When a program
version Vji of a task Ti completes its execution by
all the processors of its group Gi, neighboring
processors exchange and compare their outputs.
Then, the disagreement graph DGi is obtained. A
task Ti is released if at least (thi + 1) different
processors agree with each other on the output for
at least (tsi + 1) different program versions and the
outputs of all the program versions are the same;
otherwise, if there are at least (thi + 1) processors
agree with each other on the output for (2tsi) or
fewer different program versions and there are two
or more different outputs, then the next program
version of the task Ti is assigned to the group Gi
for execution. Otherwise, if there are at least (thi +
1) processors which agree with each other on the
outputs of (2tsi + 1) different program versions and
there are three or more different outputs, then the
task Ti is aborted; otherwise, the task group size is
incremented by one (gi = gi + 1), and the DGMM
algorithm is called to add one more neighboring
processor to the group Gi. Calling the DGMM
algorithm is repeated until either a group of the
required size is obtained or the entire graph is
searched without success. In the latter case, the

task Ti is aborted and added to the aborted task
queue Qa for later execution. In the former case,
the first program version of the task is assigned to
the returned group for execution. The above
process is repeated until the task is aborted, the
task is aborted and added to the aborted task queue
Qa for later execution, or the output for the task is
obtained. The formal algorithm is given in [12].

1.3.4. Integrated Fault-Tolerant (FCFS + First

Fits First) Scheduling Algorithm
The Integrated Fault-Tolerant (FCFS + first Fits
First) (FCFSFFF) scheduling algorithm works as
follows. As tasks, which may consist of more than
one program version, arrive at the system, they are
queued up along with their group sizes (i.e., gi =
task hardware reliability degree thi + 1) and task
software reliability degree tsi in a single task
queue Q. When a task Ti is scheduled for execution,
the Dynamic Group Maximum Matching (DGMM)
algorithm is called to find the required group size
for the task Ti. If the returned group size by the
DGMM algorithm is smaller than the required
group size, then the returned group is allocated to
the first program version V1j of the first task Tj in
the task queue that fits the returned group. Next,
the DGMM algorithm is called to find another
subgraph of size gi in a different part of the system
graph to allocate the task Ti. This process is
repeated until either a group of size gi is obtained
or the entire system graph is searched without
success. In the latter case, the task Ti is added to
the aborted task queue Qa for later execution. In
the former case, the first program version V1i of
the task Ti is assigned to the returned group for
execution. When a program version Vji of a task Ti
completes its execution by all the processors of its
group Gi, neighboring processors exchange and
compare their outputs. Then, the disagreement
graph DGi is obtained. A task Ti is released if at
least (thi + 1) different processors agree with each
other on the output for at least (tsi + 1) different
program versions and the outputs of all the
program versions are the same; otherwise, if there
are at least (thi + 1) processors agree with each
other on the output for (2tsi) or fewer different
program versions and there are two or more
different outputs, then the next program version of
the task Ti is assigned to the group Gi for
execution. Otherwise, if there are at least (thi + 1)
processors which agree with each other on the
outputs of (2tsi + 1) different program versions and
there are three or more different outputs, then the
task Ti is aborted; otherwise, the task group size is
incremented by one (gi = gi + 1), and the DGMM

AIML Journal, Volume (5), Issue (2), June, 2005

 12

algorithm is called to add one more neighboring
processor to the group Gi. Calling the DGMM
algorithm is repeated until either a group of the
required size is obtained or the entire graph is
searched without success. In the latter case, the
task Ti is aborted and added to the aborted task
queue Qa for later execution. In the former case,
the first program version of the task is assigned to
the returned group for execution. The above
process is repeated until the task is aborted, the
task is aborted and added to the aborted task queue
Qa for later execution, or the output for the task is
obtained. The formal algorithm is given in [12].

2. Simulation Model
The features of the simulator are summarized as follows
[12]:
1. The computing environment is an M × M torus

system (M ≥ 1) connected to a host machine where
scheduling and obtaining tasks disagreement graphs
take place.

2. Each task (program) Ti which arrives at the system
along with its reliability degree ti will be assigned to
a group Gi of size gi (initially gi = ti + 1).

3. Tasks interarrival times are exponentially distributed
with the average arrival rate λ.

4. Tasks mean execution times are exponentially
distributed. Tasks arrived at the system could have
different mean execution times.

3. Simulation Results
In our simulation we consider a 6 x 6 torus system (M =
6). See Figure 1. We assume that there are long tasks and
short tasks. Mean execution time of long task is 10 time
units and mean execution time of short task is 1 time unit.
Tasks arrive at the system with the probability of being of
long task equal to (X) and being of short task equal to (1-
X); in other words, task length probability has a Bernoulli
probability distribution. All the results given in this
section assume X = 0.5. Also, we assume that the task
software reliability tsi = 1 (each task has three program
versions, with at least two fault free versions). The
probability that the first two versions of a task being fault
free (third version will not be executed) equal to (Y); in
other words, third version execution probability has a
Bernoulli probability distribution. All the results given in
this section assume Y = 0.5. Furthermore, we assume that
there are three types of task hardware reliability degrees:
thi = 0 (type0), thi = 1 (type1) and thi = 2 (type2). Tasks
arrive at the system with the probability of being of type0
equal to (Z0), of being of type1 equal to (Z1), and of being
of type2 equal to (Z2). In other words, tasks hardware
reliability degrees probability has a Binomial probability
distribution. All the results given in this section assume
Zi = 1/3, for i = 0, 1, 2. Each processor in the system has
the probability (reliability) of being fault free equal to
(Rp); in other words, processor reliability has a Bernoulli
probability distribution. Each communication link in the
system has the probability of being fault-free equal to (Rl);
in other words, communication link reliability has also a

Bernoulli probability distribution. In our simulation, we
consider four failure cases with each type of tasks
software reliability. First case, processors and
communication links are fault-free, Rp = 1 and Rl = 1.
Second case, only communication links are subject to
failures, Rp = 1 and Rl = 0.9. Third case, only processors
are subject to failures, Rp = 0.9 and Rl = 1. Fourth case,
both processors and communication links are subject to
failures, Rp = 0.9 and Rl = 0.9.

Our simulation terminates when the number of tasks
released by the system is equal to 3000 tasks. The first
300 tasks released by the system are discarded, so the
initial transient state of the system does not affect the
simulation results. Each performance metric reading is
an average over 10 runs.

We evaluate two performance metrics. The first
metric is system mean response time. The second metric
is percentage of tasks of typei completed, for i = 0, 1, 2.
This metric is defined as follows:

percentage of tasks of typei completed during simulation
time =

This metric is intended to complement the former
performance metric. For instance, if a scheduling policy
favors running the shorter tasks over the longer tasks for
improving the system mean response time, one is
interested to know what the trade offs. In other words;
how much the percentage of longer tasks completed
during the simulation time is decreased.

3.1. FCFS Scheduling Algorithm

Performance
Figure 2 shows system average response time under the
Integrated Fault-Tolerant First-Come, First-Served
(FCFS) scheduling algorithm. From the plot we can see
that as the task arrival rate λ increases, the average
response time also increases.

Figures 3, 4, 5 and 6 show the percentage of tasks of
typei completed, for i = 0, 1, 2, by FCFS scheduling
algorithm, under each one of the four failure cases
respectively. From the plots we can see that when the
task arrival rate λ equal to 1, the percentage of tasks
completed of each tasks type under the four failure cases
is almost the same. Also, we can see that as arrival rate λ
increases, the percentage of tasks completed of each tasks
type decreases. Furthermore, from the figures we can see
that the percentage of tasks completed of all tasks types
under each one of the failure cases is almost the same. In
other words, FCFS does not favor one type of task over
another type of task for execution.

3.2. FCFSSFF Scheduling Algorithm

Performance
Figure 7 shows system average response time under the
Integrated Fault-Tolerant (FCFS + Smallest Fits
First) (FCFSSFF) scheduling algorithm. In Figure 7, up

100×
arrivedtypeoftasksofnumber

completedtypeoftasksofnumber

i

i

)1(

AIML Journal, Volume (5), Issue (2), June, 2005

 13

to a point (in our experiment arrival rate = 2) as task
arrival rate λ increases, the system average response time
also increases. Beyond that point, as arrival rate increases,
the system average response time decreases. This is due
to the fact that when the task arrival rate λ is high, more
tasks will be queued up in the task queue and if the
returned group size by the DGMM algorithm is smaller
than the required size, the FCFSSFF scheduling
algorithm will assign the returned group to the task with
the smallest group size in the task queue. This means that
tasks with small group sizes will be executed first; i.e.,
more concurrent tasks running on the system. With a
higher task arrival rate (in our experiment arrival rate >
5), as arrival rate increases, the system average response
time also increases. This is due to that the fact the length
of the task queue will grow longer. Thus, even tasks with
small group size have to wait longer in the task queue
before being schedule for execution.

Figures 8, 9, 10 and 11 show the percentage of tasks
of typei completed, for i = 0, 1, 2, by FCFSSFF
scheduling algorithm, under each one of the four failure
cases respectively. From the plots we can see that when
the task arrival rate λ equal to 1, the percentage of tasks
completed of each tasks type under the four failure cases
is almost the same. Also, we can see that as arrival rate λ
increases, the percentage of tasks completed of each tasks
type decreases. Furthermore, we can see that as the task
arrival rate λ increases, the percentage of tasks completed
with large group is lower than the percentage of tasks
completed with small group. This is due to the fact that
when the task arrival rate λ is high, more tasks will be
queued up in the task queue and if the returned group size
by the DGMM algorithm is smaller than the required size,
the FCFSSFF scheduling algorithm will assign the
returned group to the task with the smallest group size in
the task queue. This means that tasks with small group
sizes will be executed first, in other words, FCFSSFF
scheduling algorithm favors tasks with small group over
tasks with large group for execution.

3.3. FCFSLFF Scheduling Algorithm

Performance
Figure 12 shows system average response time under the
Integrated Fault-Tolerant (FCFS + Largest Fits
First) (FCFSLFF) scheduling algorithm. In Figure 12,
we can see that as task arrival rate increases the system
average response time also increases.

Figures 13, 14, 15 and 16 show the percentage of
tasks of typei completed, for i = 0, 1, 2, by FCFSLFF
scheduling algorithm, under each one of the four failure
cases respectively. From the plots we can see that when
the task arrival rate λ equal to 1, the percentage of tasks
completed of each tasks type under the four failure cases
is almost the same. Also, we can see that as arrival rate λ
increases, the percentage of tasks completed of each tasks
type decreases. Furthermore, from the Figure 13 we can
see that the percentage of tasks completed of all tasks
types under the first failure case is almost the same.
Contrarily in Figures 14, 15 and 16 we can see that as the
task arrival rate λ increases, the percentage of tasks
completed with large group is lower than the percentage
of tasks completed with small group. This is due to the

fact that when the task arrival rate λ is high, more tasks
will be queued up in the task queue and under the last
three failure cases, the DGMM algorithm will return
small group sizes, thus, the FCFSLFF scheduling
algorithm will assign the returned group to task with
small group size. This means that if the system contains
faulty components, FCFSLFF scheduling algorithm
favors tasks with small group over tasks with large group
for execution.

3.4. FCFSFFF Scheduling Algorithm

Performance
Figure 17 shows system average response time under the
Integrated Fault-Tolerant (FCFS + first Fits First)
(FCFSFFF) scheduling algorithm. In Figure 17, as task
arrival rate increases the system average response time
also increases.

Figures 18, 19, 20 and 21 show the percentage of
tasks of typei completed, for i = 0, 1, 2, by FCFSFFF
scheduling algorithm, under each one of the four failure
cases respectively. From the plots we can see that when
the task arrival rate λ equal to 1, the percentage of tasks
completed of each tasks type under the four failure cases
is almost the same. Also, we can see that as arrival rate λ
increases, the percentage of tasks completed of each tasks
type decreases. Furthermore, from the Figure 18 we can
see that the percentage of tasks completed of all tasks
types under the first failure case is almost the same.
Contrarily in Figures 19, 20 and 21 we can see that as the
task arrival rate λ increases, the percentage of tasks
completed with large group is lower than the percentage
of tasks completed with small group. This is due to the
fact that when the task arrival rate λ is high, more tasks
will be queued up in the task queue and under the last
three failure cases, the DGMM algorithm will return
small group sizes, thus, the FCFSFFF scheduling
algorithm will assign the returned group to task with
small group size. This means that if the system contains
faulty components, FCFSFFF scheduling algorithm
favors tasks with small group over tasks with large group
for execution.

4. Conclusion
In this work, via four scheduling algorithms, the
performance of the Integrated Fault-Tolerant (IFT)
technique was studied. Two performance metrics were
evaluated: system average response time and percentage
of completed tasks of specific type.

Under the Integrated Fault-Tolerant First-Come,
First-Served (FCFS) scheduling algorithm, our
simulation study showed that under the conditions
experimented here, as arrival rate λ increases, the system
average response time also increases.

Under the Integrated Fault-Tolerant First-Come,
First-Served + Smallest Fits First (FCFSSFF) scheduling
algorithm, our simulation study showed that under the
conditions experimented here, beyond a point, as arrival
rate λ increases, the system average response time
decreases. With a higher task arrival rate, the system
average response time increases.

Under the Integrated Fault-Tolerant First-Come,
First-Served + Largest Fits First (FCFSLFF) scheduling

AIML Journal, Volume (5), Issue (2), June, 2005

 14

algorithm, our simulation study showed that under the
conditions experimented here, as arrival rate λ increases,
the system average response time also increases.

Under the Integrated Fault-Tolerant First-Come,
First-Served + First Fit First (FCFSFFF) scheduling
algorithm, our simulation study showed that under the
conditions experimented here, as arrival rate λ increases,
the system average response time also increases.

Also, the study showed that FCFSSFF
scheduling algorithm average response time
outperforms the other algorithms. Furthermore, it
showed that FCFS scheduling algorithm gives the
highest average response time.

In addition, the study showed that FCFSSFF
scheduling algorithm, FCFSLFF scheduling algorithm
and FCFSFFF scheduling algorithm favor tasks with
small group sizes over tasks with large group sizes for
execution. Contrarily, FCFS scheduling algorithm does
not favor tasks with small group over tasks with large
group sizes for execution.

5. References

[1] O. Serlin. Fault-Tolerant System in
Commercial Applications. IEEE
Computer, Volume 17: 19-30, 1984.

[2]

D. A. Rennels. Fault-Tolerant
Computing-Concepts and Examples.
IEEE Transactions on Computers,
Volume C-33: 1116-1129, 1984.

[3] D. P. Siewiorek. Architecture of Fault-
Tolerant Computers. IEEE Computer,
Volume 17: 9-18, 1984.

[4] P. Jalote. Fault Tolerance in Distributed
Systems. PTR Prentice Hall, 1994.

[5] J. J. Horning, H. C. Lauer, P. M.
Melliar-Smith, B. Randell. A Program
Structure for Error Detection and
Recovery. Lecture Notes in Computer
Science, Volume 16: 171-187, Springer-
Verlag, New York, 1974.

[6] B. Randell. System Structure for
Software Fault Tolerance. IEEE
Transactions on Software Engineering,
Volume SE-1: 220-232, 1975.

[7]

T. Anderson, D. N. Halliwell, P. A.
Barrett, M. R. Moulding. An Evaluation
of Software Fault Tolerance in a
Practical System. In proceedings of the
15th International Symposium on Fault
Tolerant Computing, 1985.

[8]

R. H. Campbell, K. H. Horton, G. G.
Belford. Simulations of a Fault-Tolerant
Deadline Mechanism. In proceedings of
the 9th International Symposium on
Fault Tolerant Computing, 1979.

[9] H. Hecht. Fault-Tolerant Software.
IEEE Transactions on Reliability,
Volume R-28: 227-232, 1979.

[10]

H. O. Welch. Distributed Recovery
Block Performance in a Real-Time
Control Loop. In proceedings of the
Real-Time Systems Symposium, 1983.

[11]

L. L. Pullum. Software Fault Tolerance
Techniques and Implementation. Artech
House, 2001.

[12] O. A. Abulnaja, High Performance
Techniques for Reliable Execution of
Tasks Under Hardware and Software
Faults. Ph.D. Thesis, University of
Wisconsin-Milwaukee, 1996.

[13]

S. H. Hosseini. Fault-Tolerant
Scheduling of Independent Tasks and
Concurrent Fault-Diagnosis in Multiple
Processor Systems. In proceedings of
the IEEE International Conference on
Parallel Processing, Volume I, 1988.

[14]

S. H. Hosseini and T. P. Patel, An
Efficient and Simple Algorithm for
Group Maximum Matching. In
proceedings of the 4th ISMM/IASTED
International Conference on Parallel and
Distributed Computing Systems, 1991.

Biography:

O. A. Abulnaja received the BS degree in computer
science from King Abdulaziz University, Jeddah, Saudi
Arabia, in 1986. He received the MS degree in computer
science and the PhD degree in engineering (computer
science) from University of Wisconsin-Milwaukee,
Milwaukee, Wisconsin, USA, in 1990 and 1996,
respectively. Currently, he is an associate professor of
computer science at King Abdulaziz University. His
research interests are Fault Tolerance, Systems
Programming, Software Engineering, Parallel and
Distributed Processing, and Systems Performance.

N. M. Saadi received the BS degree in computer science
from King Abdulaziz University, Jeddah, Saudi Arabia,
in 2001. He works for Faculty of Technology. His
research interests are Fault Tolerance, Systems
Programming, and Systems Performance.

AIML Journal, Volume (5), Issue (2), June, 2005

 15

 1 2 5 6

 7 8 11 12

 31 32 35 36

Figure 1: 6 × 6 Torus System

 Figure 2: System Mean Response Time under FCFS, thi =0,1,2

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1 2 3 4 5 6 7 8
Arrival Rate

R
es

po
ns

e
Ti

m
e

T

LR=1, PR=1 LR=0.9, PR=1 LR=1, PR=0.9 LR=0.9, PR=0.9

 Figure 3: Percentage of Task completed under FCFS, LR=1, PR=1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8
Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

 Figure 4: Percentage of Task completed under FCFS, LR=0.9, PR=0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8
Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

 Figure 5: Percentage of Task completed under FCFS, LR=1, PR=0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

Pe
rc

en
ta

ge
 o

f T
as

ks
 C

om
pl

et
ed

thi=0 thi=1 thi=2

 Figure 6: Percentage of Task completed under FCFS, LR=0.9 , PR=0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

 Figure 7: System Mean Response Time under FCFSSFF, thi =0,1,2

0

40

80

120

160

200

240

280

320

1 2 3 4 5 6 7 8
Arrival Rate

R
es

po
ns

e
Ti

m
e

T

LR=1, PR=1 LR=0.9, PR=1 LR=1, PR=0.9 LR=0.9, PR=0.9

AIML Journal, Volume (5), Issue (2), June, 2005

 16

 Figure 8: Percentage of Task completed under FCFSSFF, LR=1, PR=1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

Pe
rc

en
ta

ge
 o

f T
as

ks
 C

om
pl

et
ed

thi=0 thi=1 thi=2

 Figure 9: Percentage of Task completed under FCFSSFF, LR=0.9, PR=1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

Pe
rc

en
ta

ge
 o

f T
as

ks
 C

om
pl

et
ed

thi=0 thi=1 thi=2

 Figure 10: Percentage of Task completed under FCFSSFF, LR=1, PR=0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

 Figure 11: Percentage of Task completed under FCFSSFF, LR=0.9, PR=0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

 Figure 12: System Mean Response Time Under FCFSLFF, thi = 0, 1, 2

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8
Arrival Rate

R
es

po
ns

e
Ti

m
e

T

LR=1, PR=1 LR=0.9, PR=1 LR=1, PR=0.9 LR=0.9, PR=0.9

 Figure 13: Percentage of Task completed under FCFSLFF, LR=1 , PR=1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

AIML Journal, Volume (5), Issue (2), June, 2005

 17

 Figure 14: Percentage of Task completed under FCFSLFF, LR=0.9 , PR=1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

 Figure 15: Percentage of Task completed under FCFSLFF, LR=1, PR=0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

 Figure 16: Percentage of Task completed under FCFSLFF,LR=0.9 , PR=0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

 Figure 17: System Mean Response Time Under FCFSFFF, thi = 0, 1, 2

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8
Arrival Rate

R
es

po
ns

e
Ti

m
e

T

LR=1, PR=1 LR=0.9, PR=1 LR=1, PR=0.9 LR=0.9, PR=0.9

 Figure 18: Percentage ofTask completed under FCFSFFF, LR=1 , PR=1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

Pe
rc

en
ta

ge
 o

f T
as

ks
 C

om
pl

et
ed

thi=0 thi=1 thi=2

 Figure 19: Percentage of Task completed under FCFSFFF, LR=0.9 , PR=1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

Pe
rc

en
ta

ge
 o

f T
as

ks
 C

om
pl

et
ed

thi=0 thi=1 thi=2

AIML Journal, Volume (5), Issue (2), June, 2005

 18

 Figure 20: Percentage ofTask completed under FCFSFFF, LR=1 , PR=0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

 Figure 21: Percentage ofTask completed under FCFSFFF, LR=0.9 , PR=0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Arrival Rate

P
er

ce
nt

ag
e

of
 T

as
ks

 C
om

pl
et

ed

thi=0 thi=1 thi=2

AIML Journal, Volume (5), Issue (2), June, 2005

